
Architecture of the
Netgrif Application

Platform



1 Business architecture
Netgrif (bsNetgrifPlatfrom) is a low code application platform that allows you to cover end-to-end
processes. The platform provides a fast, simple, and efficient way to automate, orchestrate and
integrate business processes. It can be used when it comes to the development of new
applications or when it is necessary to upgrade older systems. The Netgrif platform is built on the
latest open-source and source-available technologies such as MongoDB, Elasticsearch, Spring
Boot and Angular. It is easily deployed in small infrastructure. The Netgrif application platform
helps those who need to quickly digitize existing or new business processes.

Basic attributes of the Netgrif platform:

● Portal (bfPortal) - one place where tasks are performed by employees (eTasks), but also
by customers (eForms).

● BPM Engine (bfBPMEngine) - automated business processes that function as a sequence
of tasks that can be run based on business rules. Automation is performed using no code
/ low code - pro code digitization of "paper jobs"

● Data / Process Integration (bfDataProcessIntegration) - integration of tasks / data from
existing applications.

o Web services implemented using the REST API.

o Web services implemented using SOAP.

o Integration using native connector to a target system (ie. system SDK)

Picture 1 – Business architecture of Netgrif Application Platform

Business features and functions of applications created using the Netgrif platform:

• eForm, eTask (bfeForm, bfeTask) - NAE-based applications provide a single access point
to perform employee tasks across the organization. If necessary, also within the business
processes performed by customers within the provided services.

• Automation (bfAutomation) - The Netgrif platform allows you to model and automate
business processes as sequences of tasks performed in accordance with defined rules,
integrate tasks from existing applications into processes, and digitize "paper" tasks with
the need to program only to the necessary extent.

• Workflow nets (bfWorkflowNets) - Workflow processes are implemented within Netgrif AE
using the so-called workflow nets that consist of state variables, tasks, and their

1



connections. Workflow nets determine the state in which individual tasks can be
performed.

• Dashboards (bfDashboards) - Reports of performed tasks can be displayed in various
forms according to customer requirements, for example in the form of graphs, charts,
counters or tables. After clicking on a dashboard panel/component, the user can be
redirected to a list of tasks available on the Task Overview screen.

• RBAC (bfRBAC) - Access management of the platform is based on the principle of roles
and groups. You can define permissions for a role on tasks. But also, you can assign roles
to users who interact with tasks in the process. In addition, it is possible to fully automate
tasks with the use of the so-called system roles that automatically run tasks. It means
that activities are performed automatically by some software instead of a user, e.g.,
based on a timer or event.

o Individual tasks in the Task Overview can be assigned to users based on
predefined roles. When it is assigned, the job status changes from job processing
status to job assignment status. If necessary, the assigned task can be cancelled
or moved to another user with the same permissions (reassign).

o You can use filters to create personalized task reports in applications. Reports
can be created by the user or by a supervisor. When managing users, it is possible
to assign specific users to roles and groups within the customer's organizational
structure.

• Dynamic data forms (bfDynamicDataForms) - Data fields or data forms can be bound to
tasks. When performing the task itself, it is possible to fill in data fields or automatically
calculate by calling the so-called actions.

o One data field can be linked to several tasks (via data references) in which its
value can be changed or displayed. You can use data field attributes to set data
field properties for individual tasks. Using these attributes, it is, therefore, possible
to set whether the data field is visible in the form for a given task, whether it is
editable, required, and so on.

o With actions, it is possible to automatically calculate the value of a given data
field based on the values ​​of other data fields, including the values ​​of data fields
obtained from external systems by calling web services.

• Actions (bfActions) - Small blocks of code that are executed during the life cycle of the
modelled process. Actions have access to the application engine API and can interact
with the processes, cases, and tasks contained in them. These interactions correspond to
an event, such as setting new values, creating new cases, or assigning a task. Multiple
actions can be associated with these events, so a chain reaction of events and actions
can occur. This allows you to create extraordinarily rich applications from simple building
blocks.

• Integrations (bfSOAP, bfRESTWeb, bfNativeConnectors) - Applications created by the
Netgrif platform can easily integrate with other systems, databases, applications, etc.
This property is achieved by the used technological architecture. You can use any
connectors or web services.

2



2 Application architecture
Netgrif Application Platform (asNetgrifPlatfrom) consists of two tools: Netgrif Application Builder
(NAB) and Netgrif Application Engine (NAE).

Picture 2 – Application architecture of Netgrif Application Platform

Netgrif Application Builder (asNAB) is a public web application where users can instantly design
their own process models (along with data, data forms, and roles) or import models from any
BPMN model.

• Process creation (afProcessCreation) - a tool for creating and editing existing but also
new processes and defining their metadata

• Process modeller (afProcessModeller) - a tool for modelling process models in the Petri
net format

• Actions Editor (afActionsEditor) - editor for creating and editing actions (pieces of code
that are custom and specific for Petriflow language and the Groovy scripting language
features)

• Data Editor (afDataEditor) - editor for creating and editing data variables
• Form builder (afFormBuilder) - editor for creating and editing forms related to a specific

task
• Role Editor (afRoleEditor) - editor for creating and editing roles belonging to the entire

process but also specific tasks

Netgrif Application Engine (asNAE) is a process server engine that executes processes modelled
in NAB. It is designed as a Java application with a three-tier architecture that provides a
responsive web portal. The web portal generates a dynamic user interface using forms based on
imported processes from NAB. NAE is a tool for deploying and running process-driven
applications written in Petriflow. It consists of several building elements. The core of NAE is the
Process Engine Server, which allows:

• Process Upload (afProcessUpload) - upload, run and delete Petriflow processes;
• Process Instances Work Management (afProcessInstances) - creating and deleting

process instances;
• Process instances Tasks Work Management (afProcessInstanceTasks) - assign, finish,

delegate and cancel process instance tasks;
• Read and Save data variables (afReadAndSaveData) - work with data variables;

3



• Actions Execution(afActionsExectuion) - working with actions (functional units of code in
the NAE process model that are triggered based on events).

Netgrif application platform supports:

Property Detail

Working with tasks The Petriflow language defines tasks as the
extension of transitions in the Petri net. When
you create a new instance, all tasks are created,
and their status is set according to the marking.
The user can assign individual active tasks and
work with their functionality.

Task delegation A user working with an assigned task can
delegate the task to another user if the RBAC
allows it.

Task prioritization It is possible to assign a priority to individual
tasks based on which the user can evaluate the
importance of their processing.

Task and process instance filtering Simple but also advanced filters can be easily
created for every task and process instance
based on their priority, metadata, data, etc.

Task creation The purpose of NAB is to create process
applications. Petriflow process applications
consist of states and tasks. Data, roles, and
actions can be easily assigned to all tasks.

Task lifecycle According to the marking of the process
instance, each task can have one of these states:
inactive, executable, or running.

Working with data and forms Data are initialized when a process instance is
created. All data are valid for the entire process
and can be used in any data form. One form can
be created for one task. Tasks and forms can be
referenced interprocessly.

Changes in data field attributes All data have dynamically changeable attributes
such as behaviour (visible, editable, required,
etc.), style, name, and more. In addition to
changeable attributes, dynamic validations can
be also used.

Automatic calculations A programmed piece of code - an action - can be
used for individual events in the process. These
events involve work with data and tasks.

Responding to events Petriflow allows you to respond to process
instance’s events, and task’s events and data’s
events by triggering actions. It is also possible to
trigger these events using an action.

Organizational structure management Organizational structure is solved using a tree
structure and is connected to RBAC. It can be
mapped to any external IAM system.

Connection to external API You can use any connectors, web services

Working with files Files are also one of the data items that can be
used in forms. Files can be displayed as a single
file, list, or preview of a file.

Logging user activity in processes All activities of the system and users are logged
thanks to events (process instances, tasks and
work with data) and thus easily auditable.

4



Responsive design Process applications have optimized content
that adapts seamlessly to different screen sizes
– PWA.

3 Technological architecture
NAE is a tool for deploying and running process-driven applications written in Petriflow
language. It consists of several building elements. The core of NAE is the Process Engine
Server, which allows you to:

● load, run, update, and delete Petriflow processes;
● creating and deleting process instances;
● assign, complete, and cancel process instance tasks;
● work with data variables;
● working with Actions (functional units of code in NAE process models that are

executed based on events).

NAE is a three-tier web application - it is set up from frontend, backend, and database systems.
The frontend in NAE is covered by the Angular platform. The application backend is built on the
Spring boot framework. The three databases that make up the data layer are MongoDB,
Elasticsearch and Redis. The individual layers communicate with each other using REST API

services. Communication is allowed via HTTP and HTTPS protocols. The standard port for
communication with the application backend is 8080. Other standard ports for communication
within the solution are MongoDB (27017), Elasticsearch (9200, 9300), Redis (6379). For the
correct functioning of the solution, an additional configuration of the application backend and
database systems for cluster mode is required, according to the valid manuals.

5



4 Container architecture
Minimum capacity and performance requirements for NAE technology (specified per container or
VM instance). Recommended requirements are 2x minimum requirements.

Container vCPU RAM Storage capacity

Frontend 1 2GB 1GB

Backend 2 4GB 5GB

MongoDB 1 2GB 25GB

Elasticsearch 1 2GB 25GB

Redis 1 2GB 25GB

NAE supports docker images:

● Database server #1 – Elasticsearch – component is implemented by platform
„Elasticsearch“. Instancing takes place according to the definition of the container
„elasticsearch:7.17.+“.

● Database server #2 – MongoDB – component is implemented by platform
„MongoDB“. Instancing takes place according to the definition of the container
„mongo:6+“.

● Database server #3 – Redis – component is implemented by platform „Redis“.
Instancing takes place according to the definition of the container „redis:6+“.

● Frontend - Web server NAE– component is implemented by platform „Angular“.
Instancing takes place according to the definition of the container „NAE Frontend
image“, this being a derivative of the general definition of a container „Nginx image“.

● Backend - Application server NAE – component is implemented by platform „Spring
boot“. Instancing takes place according to the definition of the container „NAE
Backend image“, this being a derivative of the general definition of a container
„openjdk:11-jdk image“.

6



5 Security architecture
The NAE meets these safety requirements (picture 5):

• HTTPS protocol support with TLS 1.2 and 1.3
• securing a solution against OWASP Top 10 (10 most important security risks of web

applications)
• communication within components (frontend, backend) is always authorized using

authorization tokens (opaque JWT, OpenID Connect, SAML2.0)
• each request is processed based on the set of valid user permissions (roles, permission

level in the application, group membership)
• communication between the application backend and databases is secured by an

encrypted communication channel and authorization that is not shared with any other
entity

• The encryption level of user data can be configured as needed
• application data is encrypted on the application backend side
• The solution supports a secure variant of standard communication protocols such as

LDAPS, SMTPS, IMAPS, etc.

7



6 Data models, flows and standards
The NAE application contains four main data streams and models. They are:

● Communication between backend and frontend. The backend (Spring boot) and frontend
(Angular) communicate with each other via the REST API. HTTP and HTTPS requests for
working with CRUD operations are used. The RESTful API is extended by the HATEOAS
principle. HATEOAS allows you to work with resources published in the API based on
hyperlinks that express the allowed operations on the resource at the moment of a
request.

● MongoDB is used as the main database. The document data model implemented in this
database is an efficient and fast tool for storing and retrieving data. It belongs to NoSQL
databases and is an important building block for "real-time" web applications such as
NAE. This database stores all data from Petriflow processes, as well as information about
users, groups, roles, etc. Communication with the MongoDB database takes place via a
proprietary protocol based on the TCP protocol. The connection is secured using the TLS
/ SSL protocol and authorization.

● Elasticsearch is implemented for quick search in the application. This component
contains a distributed full-text search engine. MongoDB has its limit in the form of quick
search and indexing. For this reason, NAE applications use Elasticsearch to index data
primarily stored in MongoDB. It communicates with Elasticsearch via the database Rest
API, the HTTPS protocol.

● The in-memory data structure, Redis, is used as a "cache" and "session store" within the
NAE application. Redis also uses a TCP connection with the proprietary protocol called
RESP (Redis Serialization Protocol).

Figure 5 – Data models, flows and standards in NAE

8



7 NAE Editions
Netgrif Application Engine is available in two editions:

7.1 Community Edition
The community edition of the Application Engine is publicly available, open-source, distributed on
the GitHub platform. The edition contains a full-fledged Petriflow workflow engine for building any
application. It also includes built-in user management with the ability to connect to
LDAP-compliant systems, work with organizational structures, advanced data indexing with
Elasticsearch, a full-featured email client, in-process PDF file generator and support for custom
business rules across processes using BRE (Business Rules Engine) Drools.

The community edition is available as a standalone Java application, as a library that can be
downloaded using the Maven dependency management system, or as a Docker Image for direct
deployment to a container environment.

The community edition is intended for development and applications for which one installation of
the Application Engine is sufficient. It is suitable for beginning developers, for rapid prototyping of
the solution, or for applications that do not require extensive scaling or a larger number of
integrations.

7.2 Enterprise Edition
Enterprise edition expands the community edition, so it builds on the same foundations, so a
quick and easy migration from the community edition is guaranteed. The Enterprise Edition
expands NAE with the ability to deploy to a private cloud environment with support for simple
horizontal scaling through direct communication with the Kubernetes Orchestra. It also offers
support for authorization protocols OpenID Connect, SAML2.0 with SSO capability and advanced
settings for LDAP.

For easier integration with external systems, the edition enables automated generation of
connectors for web services with the available OpenAPI v3 or SOAP specifications. It is also
possible to publish web services directly from the process without the need for developer
intervention.

9



In addition to NAE, the Enterprise Edition also includes other components to cover the needs of
the cloud environment. Netgrif Admin is a component that communicates directly with
Kubernetes for automatic scaling and deployment of NAE instances (containers) and for ensuring
fast and easy communication between processes no matter where in the cluster the process is
deployed. Individual NAE instances communicate using the gRPC protocol. Netgrif Gateway is a
component for easier communication of the NAE cluster with the outside world, whether it is
communication with the frontend application or external systems. The component automatically
redirects queries to the correct process and provides verification of access to deployed
processes. The Search node is a component of the cluster for cluster search requests in case
when it is not possible to detect a process context of the request so it is not possible to
accurately route the request to NAE node. Every cluster deployment has node called NAE Root
node which handels system process application (ie. filter management). The last component of
the cluster is NAE Worker node which handles all process applications deployed into the cluster.
Worker nodes are possible to scale according to system needs.

A significant expansion is the support of plugins as microservices. Plugin is a component of a
cluster solution for extending the functionality of the NAE application outside the deployed
processes, it is a support function or connector for external services or systems. The plugin is
deployed and managed according to the architectural design of the microservices. For
comparison with the community edition, the generation of PDF files is considered a plugin and so
it can be scaled separately and can be used by all processes deployed in the cluster. Plugin can
extend the Action API for process application with new functionality and react to events of NAE
nodes and process applications.

10



7.3 Comparison of the editions
The following table compares the Community and Enterprise versions for a better overview.

Community Enterprise

Licence type Open Source Proprietary

Workflow Engine ✔ ✔

User management ✔ ✔

LDAP
Authentication & Profile ✔ ✔

Groups ✔

Mail client ✔ ✔

Business Rules Engine Drools ✔ ✔

Event Log / Audit Log ✔ ✔

Netgrif Admin ✔

Netgrif Gateway ✔

Netgrif Search node ✔

gRPC protocol ✔

Connection with IDM
solutions
(OpenID Connect, SAML2.0)

✔

Automated integrations
(OpenAPI3, SOAP) ✔

Plugin management

running locally ✔* ✔

as a microservice ✔

Contractual guarantees ✔

SLA support (up to 24/7/365) ✔

*Plugins included in the Community Edition are PDF generator, QR code generator, and ZIP lookup
service. Plugin can be active as locally loaded jar file into NAE instance.

11


