
Process Communication in Petriflow:
A Case Study

Milan Mladoniczky1,2, Gabriel Juhás1,2,3, and Juraj Mažári1,2

1 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava,

Ilkovičova 3, 812 19 Bratislava, Slovakia,
Home page: https://fei.stuba.sk

2 NETGRIF, s.r.o.,
Jána Stanislava 28/A, 841 05 Bratislava, Slovakia

netgrif@netgrif.com

Home page: https://netgrif.com
3 BIREGAL s. r. o.,

Klincova 37/B, 821 08 Bratislava, Slovakia
biregal@biregal.sk

Home page: http://www.biregal.com

Abstract. In this paper, we explain the usage of Petriflow language in
a multi-process environment with inter-process communication via pro-
cess events. We introduce an example that demonstrates the advantages
of Petriflow language when synchronisation between two and more pro-
cesses is required.

Keywords: Petri nets · workflow · Petriflow · process events · inter-
process communication · Petriflow actions

1 Introduction

Petriflow[1] is modelling language for developing process-driven applications. It is
based on Petri nets with an extension of reset, inhibitor, and read arcs to enable
multiple concurrent readings on a transition. Petriflow can be divided into several
layers. The first layer is a Petri net process model itself. Process roles are the
second layer of Petriflow language. They provide access control over transitions
of a process model. The third layer also called data-set of a process, consists of
all data variables of a model. The fourth and the last layer are actions. Actions
are small snippets of code written in Groovy programming language. Actions are
a powerful tool in Petriflow language. They can define relations between data
variables of a process, generate values, communicate with external services or
synchronise different instances of processes.

When a Petriflow process model is deployed to an application server, to
execute process, an instance of the process is created. In Petriflow, an instance
of a process is also called a case. A case is a deep copy of the original process with
its specific marking and data-set values. In Petriflow, each enabled transition is

a task[2]. A task consists of four events: assign, cancel, delegate, finish. Each
task event can be triggered, by a user or a system, to execute a specific function
of a task. Petriflow provides means to react to such events via actions. It is also
possible to trigger process events inside of an action and created chain of events
and reaction influencing different instances of different processes.

2 Multi-process environment

The real world is very complex. It is one of many reasons why process-driven
applications consist of a vast number of processes. It is important to be able to
define a way of process communication. Petriflow allows to model inter-process
communication with process events and actions. All events can be invoked by
some system entity, like system user or another process. Also, a reaction can be
defined to every process event in a form of an action. The important part of inter-
process communication is the search of all entities of a process model. Petriflow
provides search capabilities via library QueryDSL that is easy to use and enables
to write both simple and complex queries on every entity of a process model.
With Petriflow capabilities, we can model processes that can communicate with
each other within an application environment.[3]

3 Process hierarchy

It is rather difficult to model a hierarchy in an observed system with original
concept of Petri nets. Even more, if the observed system is very large. A net that
tries to capture the hierarchy of a system often results to be large and cumber-
some to work with. For modelling hierarchy and encapsulation of components
of a system, Nested Petri nets[4] are usually used. Nested Petri nets model a
system behaviour in different levels of detail to define relations between parts
of an observed system. Nested Petri nets can become difficult to read when a
modelled system has multiple levels of complexity. However, modelling hierarchy
between processes can be also achieved by writing invocation and reaction to the
events in processes in Petriflow language.

Let us introduce an example of this problem. An observed system, which
behaviour will be synthesised into Petriflow process models, consists of three
entities.

1. Volume - An abstract representation of a whole space inside the system.

2. Folder - An abstract representation of a part of the system space that is a
specified part of the volume. The volume of the system can contain one or
more folders. A folder also can contain one or more sub-folders.

3. File - An abstract representation of the smallest entity of the system. Every
file has to be located inside a folder. A file cannot be further divided and
create other system entities.

Fig. 1. The Volume process

From an analysis of the three system entities, three Petriflow models are
created. Each model consists of transitions to manage the modelled system entity
and its data-set.

The Volume process, in the Figure 1, contains data variables for a name of
a volume instance, a name for a new folder, and an array of reference objects to
all Folder process instances which are located inside the system volume.

Fig. 2. The Folder process

The Figure 2 illustrates the Folder process. The process has data-set con-
taining data variables of an array of its sub-folders and an array of its files.

The File process, in the Figure 3 is quite simple. Its data-set contains refer-
ence to its parent and raw bytes of it content.

It is clear, from the models in Figure 1, Figure 2, and Figure 3, that key
transitions are Create a folder in the Volume process, Constructor, Create
a folder, Create a file in the Folder process and Constructor in the File
process. As these models are written in Petriflow language each enabled tran-

Fig. 3. The File process

sition is a Petriflow task with its process events. First, an action to the finish
event on the transition Create a folder is defined.

Listing 1.1. An action in the Volume process to create a new folder instance

<event type=” f i n i s h ”>
<a c t i o n s phase=” post ”>

<ac t i on>
Case f o l d e r = createCase (” Folder ” , folderName . va lue) ;
change f o l d e r s va lue {

f o l d e r s . va lue . add (f o l d e r . id) ;
r e turn f o l d e r s . va lue ;

} ;
<ac t i on>

<a c t i o n s>
</ event>

When a user assigns a task Create a folder, fills out data about a new
folder, e.g. folder’s name, and then finishes the task, the action is executed. The
new folder instance is constructed by calling the createCase function with the
Folder process id and a new instance title stored in data variable folderName.
The created instance is stored in the local variable folder. Then the id of the
constructed instance is added to values of data variable folders.

This example perfectly expresses the parent-child relationship between the
Volume instance and the Folder instance. Likewise, the relationship between
different instances of the Folder process and between instances of the Folder and
the File process can be defined.

The Second important transition in the processes is the Constructor tran-
sition. It is the first transition in the process and it is responsible for initialising
and setting the process data of a new instance. In the example above, only a
name of an instance is sent to the new instance of the Folder process. If a new
file is created, it is required to set reference to the parent folder. To achieve this

functionality, the required data value can be sent to the Constructor task of a
newly created File instance.

Listing 1.2. An action to create a new file and pass its parent folder in the Constructor
task

<event type=” f i n i s h ”>
<ac t i on phase=” post ”>

<ac t i on>
Case f i l e = createCase (” F i l e ” , f i leName) ;
change f i l e s va lue {

f i l e s . va lue . add (f i l e . id) ;
r e turn f i l e s . va lue ;

} ;
Task cons t ruc to r = findTask {

i t . t i t l e . eq (” Constructor ”)
. and (i t . ca se Id . eq (f i l e . id))

} ;
i f (c on s t ruc to r){

con s t ruc to r = ass ignTask (con s t ruc to r) ;
setData (cons t ructor , [” parent ” :useCase . id]) ;
f i n i shTask (con s t ruc to r)

}
</ ac t i on>

</ ac t i on>
</ event>

The action to create and set up a new file instance is called when a user
finishes the task Create a file of the Folder process instance. The new file
instance is created by calling the createCase function with the File process id

and a name of the new file. The returned reference to the created file instance
is added to the data variable of the Folder process instance file, which stores
references to all files stored in the folder. The next step in the action is to send
the required data to the file instance. First, the Constructor task of the new file
instance is found via findTask function with QueryDSL expression parameter.
The entity search is based on ”Query by example” principle. As it can be seen
in the example, the Listing 1.2, the keyword it in the expression is the example
object of the task entity. If the Constructor task is returned, assign it to the
currently logged user. The parent folder reference is set by function setData

where the first parameter is the Constructor task and the second parameter
is a map of data variables. The key of the map is a data variable id of the
File process and the value of the map is a desired value of the data variable. In
the example above, the Listing 1.2, the data variable with id parent is set to
reference the current Folder process instance. At last, the Constructor task is
finished.

4 Conclusion

Inter-process communication modelled in Petriflow language can be applied to
the countless applications. As the example illustrated in this paper, it can be
used to express hierarchy between instances of different processes. It can be also
used to separate often repeated parts of a process as a standalone process model
and then referenced from the original process. Even large and complex processes
can be modelled with communication via Petriflow process events with ease and
preserved readability of Petri nets.

References

1. Mladoniczky, M., Juhás, G., Mažari, J., Gažo, T. and Makáň, M.: Petriflow: Rapid
language for modelling Petri nets with roles and data fields. Proceedings of the
Workshop Algorithms and Tools for Petri nets 2017, October 19-20, 2017, Technical
University of Denmark, Kgs. Lyngby, Denmark, (2017)

2. Riesz, M., Seckár, M., Juhás, G.: PetriFlow: A Petri Net Based Framework for
Modelling and Control of Workflow Processes. In ACSD/Petri Nets Workshops (pp.
191-205). (2010)

3. Mažari, J., Juhás, G., Mladoniczky, M.: Petriflow in Actions:Events Call Actions
Call Events. Proceedings of the Workshop Algorithms and Tools for Petri nets 2018,
October 11-12, 2018, University of Augsburg, Germany, (2018)

4. Irina A. Lomazova, Philippe Schnoebelen: Some decidability results for nested Petri
nets. Springer LNCS 1755, 208-220 (2000)

5. Van der Aalst, W. M.: The application of Petri nets to workflow management.
Journal of circuits, systems, and computers, 8.01, 21-66 (1998)

